[][src]Struct pbr::MultiBar

pub struct MultiBar<T: Write> { /* fields omitted */ }

Implementations

impl MultiBar<Stdout>[src]

pub fn new() -> MultiBar<Stdout>[src]

Create a new MultiBar with stdout as a writer.

Examples

use std::thread;
use pbr::MultiBar;

let mut mb = MultiBar::new();
mb.println("Application header:");

let mut p1 = mb.create_bar(count);
let _ = thread::spawn(move || {
    for _ in 0..count {
        p1.inc();
        thread::sleep(Duration::from_millis(100));
    }
    // notify the multibar that this bar finished.
    p1.finish();
});

mb.println("add a separator between the two bars");

let mut p2 = mb.create_bar(count * 2);
let _ = thread::spawn(move || {
    for _ in 0..count * 2 {
        p2.inc();
        thread::sleep(Duration::from_millis(100));
    }
    // notify the multibar that this bar finished.
    p2.finish();
});

// start listen to all bars changes.
// this is a blocking operation, until all bars will finish.
// to ignore blocking, you can run it in a different thread.
mb.listen();

impl<T: Write> MultiBar<T>[src]

pub fn on(handle: T) -> MultiBar<T>[src]

Create a new MultiBar with an arbitrary writer.

Examples

use pbr::MultiBar;
use std::io::stderr;

let mut mb = MultiBar::on(stderr());
// ...
// see full example in `MultiBar::new`
// ...

pub fn println(&mut self, s: &str)[src]

println used to add text lines between the bars. for example: you could add a header to your application, or text separators between bars.

Examples

use pbr::MultiBar;

let mut mb = MultiBar::new();
mb.println("Application header:");

let mut p1 = MultiBar::create_bar(count);
// ...

mb.println("Text line between bar1 and bar2");

let mut p2 = MultiBar::create_bar(count);
// ...

mb.println("Text line between bar2 and bar3");

// ...
// ...
mb.listen();

pub fn create_bar(&mut self, total: u64) -> ProgressBar<Pipe>[src]

create_bar creates new ProgressBar with Pipe as the writer.

The ordering of the method calls is important. it means that in the first call, you get a progress bar in level 1, in the 2nd call, you get a progress bar in level 2, and so on.

ProgressBar that finish its work, must call finish() (or finish_print) to notify the MultiBar about it.

Examples

use pbr::MultiBar;

let mut mb = MultiBar::new();

// progress bar in level 1
let mut p1 = MultiBar::create_bar(count1);
// ...

// progress bar in level 2
let mut p2 = MultiBar::create_bar(count2);
// ...

// progress bar in level 3
let mut p3 = MultiBar::create_bar(count3);

// ...
mb.listen();

pub fn listen(&mut self)[src]

listen start listen to all bars changes.

ProgressBar that finish its work, must call finish() (or finish_print) to notify the MultiBar about it.

This is a blocking operation and blocks until all bars will finish. To ignore blocking, you can run it in a different thread.

Examples

use pbr::MultiBar;

let mut mb = MultiBar::new();

// ...
// create some bars here
// ...

thread::spawn(move || {
    mb.listen();
    println!("all bars done!");
});

// ...

Auto Trait Implementations

impl<T> !RefUnwindSafe for MultiBar<T>

impl<T> Send for MultiBar<T> where
    T: Send

impl<T> !Sync for MultiBar<T>

impl<T> Unpin for MultiBar<T> where
    T: Unpin

impl<T> !UnwindSafe for MultiBar<T>

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.