1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
//! A DEFLATE-based stream compression/decompression library //! //! This library is meant to supplement/replace the //! `flate` library that was previously part of the standard rust distribution //! providing a streaming encoder/decoder rather than purely //! an in-memory encoder/decoder. //! //! Like with [`flate`], flate2 is based on [`miniz.c`][1] //! //! [1]: https://github.com/richgel999/miniz //! [`flate`]: https://github.com/rust-lang/rust/tree/1.19.0/src/libflate //! //! # Organization //! //! This crate consists mainly of three modules, [`read`], [`write`], and //! [`bufread`]. Each module contains a number of types used to encode and //! decode various streams of data. //! //! All types in the [`write`] module work on instances of [`Write`][write], //! whereas all types in the [`read`] module work on instances of //! [`Read`][read] and [`bufread`] works with [`BufRead`][bufread]. If you //! are decoding directly from a `&[u8]`, use the [`bufread`] types. //! //! ``` //! use flate2::write::GzEncoder; //! use flate2::Compression; //! use std::io; //! use std::io::prelude::*; //! //! # fn main() { let _ = run(); } //! # fn run() -> io::Result<()> { //! let mut encoder = GzEncoder::new(Vec::new(), Compression::default()); //! encoder.write_all(b"Example")?; //! # Ok(()) //! # } //! ``` //! //! //! Other various types are provided at the top-level of the crate for //! management and dealing with encoders/decoders. Also note that types which //! operate over a specific trait often implement the mirroring trait as well. //! For example a `flate2::read::DeflateDecoder<T>` *also* implements the //! `Write` trait if `T: Write`. That is, the "dual trait" is forwarded directly //! to the underlying object if available. //! //! [`read`]: read/index.html //! [`bufread`]: bufread/index.html //! [`write`]: write/index.html //! [read]: https://doc.rust-lang.org/std/io/trait.Read.html //! [write]: https://doc.rust-lang.org/std/io/trait.Write.html //! [bufread]: https://doc.rust-lang.org/std/io/trait.BufRead.html //! //! # Async I/O //! //! This crate optionally can support async I/O streams with the [Tokio stack] via //! the `tokio` feature of this crate: //! //! [Tokio stack]: https://tokio.rs/ //! //! ```toml //! flate2 = { version = "0.2", features = ["tokio"] } //! ``` //! //! All methods are internally capable of working with streams that may return //! [`ErrorKind::WouldBlock`] when they're not ready to perform the particular //! operation. //! //! [`ErrorKind::WouldBlock`]: https://doc.rust-lang.org/std/io/enum.ErrorKind.html //! //! Note that care needs to be taken when using these objects, however. The //! Tokio runtime, in particular, requires that data is fully flushed before //! dropping streams. For compatibility with blocking streams all streams are //! flushed/written when they are dropped, and this is not always a suitable //! time to perform I/O. If I/O streams are flushed before drop, however, then //! these operations will be a noop. #![doc(html_root_url = "https://docs.rs/flate2/0.2")] #![deny(missing_docs)] #![deny(missing_debug_implementations)] #![allow(trivial_numeric_casts)] #![cfg_attr(test, deny(warnings))] extern crate crc32fast; #[cfg(feature = "tokio")] extern crate futures; #[cfg(not(all(target_arch = "wasm32", not(target_os = "emscripten"))))] extern crate libc; #[cfg(test)] extern crate quickcheck; #[cfg(test)] extern crate rand; #[cfg(feature = "tokio")] extern crate tokio_io; // These must currently agree with here -- // https://github.com/Frommi/miniz_oxide/blob/e6c214efd253491ac072c2c9adba87ef5b4cd5cb/src/lib.rs#L14-L19 // // Eventually we'll want to actually move these into `libc` itself for wasm, or // otherwise not use the capi crate for miniz_oxide but rather use the // underlying types. #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] mod libc { #![allow(non_camel_case_types)] pub type c_ulong = u64; pub type off_t = i64; pub type c_int = i32; pub type c_uint = u32; pub type size_t = usize; } pub use crc::{Crc, CrcReader, CrcWriter}; pub use gz::GzBuilder; pub use gz::GzHeader; pub use mem::{Compress, CompressError, Decompress, DecompressError, Status}; pub use mem::{FlushCompress, FlushDecompress}; mod bufreader; mod crc; mod deflate; mod ffi; mod gz; mod mem; mod zio; mod zlib; /// Types which operate over [`Read`] streams, both encoders and decoders for /// various formats. /// /// [`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html pub mod read { pub use deflate::read::DeflateDecoder; pub use deflate::read::DeflateEncoder; pub use gz::read::GzDecoder; pub use gz::read::GzEncoder; pub use gz::read::MultiGzDecoder; pub use zlib::read::ZlibDecoder; pub use zlib::read::ZlibEncoder; } /// Types which operate over [`Write`] streams, both encoders and decoders for /// various formats. /// /// [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html pub mod write { pub use deflate::write::DeflateDecoder; pub use deflate::write::DeflateEncoder; pub use gz::write::GzDecoder; pub use gz::write::GzEncoder; pub use zlib::write::ZlibDecoder; pub use zlib::write::ZlibEncoder; } /// Types which operate over [`BufRead`] streams, both encoders and decoders for /// various formats. /// /// [`BufRead`]: https://doc.rust-lang.org/std/io/trait.BufRead.html pub mod bufread { pub use deflate::bufread::DeflateDecoder; pub use deflate::bufread::DeflateEncoder; pub use gz::bufread::GzDecoder; pub use gz::bufread::GzEncoder; pub use gz::bufread::MultiGzDecoder; pub use zlib::bufread::ZlibDecoder; pub use zlib::bufread::ZlibEncoder; } fn _assert_send_sync() { fn _assert_send_sync<T: Send + Sync>() {} _assert_send_sync::<read::DeflateEncoder<&[u8]>>(); _assert_send_sync::<read::DeflateDecoder<&[u8]>>(); _assert_send_sync::<read::ZlibEncoder<&[u8]>>(); _assert_send_sync::<read::ZlibDecoder<&[u8]>>(); _assert_send_sync::<read::GzEncoder<&[u8]>>(); _assert_send_sync::<read::GzDecoder<&[u8]>>(); _assert_send_sync::<read::MultiGzDecoder<&[u8]>>(); _assert_send_sync::<write::DeflateEncoder<Vec<u8>>>(); _assert_send_sync::<write::DeflateDecoder<Vec<u8>>>(); _assert_send_sync::<write::ZlibEncoder<Vec<u8>>>(); _assert_send_sync::<write::ZlibDecoder<Vec<u8>>>(); _assert_send_sync::<write::GzEncoder<Vec<u8>>>(); _assert_send_sync::<write::GzDecoder<Vec<u8>>>(); } /// When compressing data, the compression level can be specified by a value in /// this enum. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct Compression(u32); impl Compression { /// Creates a new description of the compression level with an explicitly /// specified integer. /// /// The integer here is typically on a scale of 0-9 where 0 means "no /// compression" and 9 means "take as long as you'd like". pub fn new(level: u32) -> Compression { Compression(level) } /// No compression is to be performed, this may actually inflate data /// slightly when encoding. pub fn none() -> Compression { Compression(0) } /// Optimize for the best speed of encoding. pub fn fast() -> Compression { Compression(1) } /// Optimize for the size of data being encoded. pub fn best() -> Compression { Compression(9) } /// Returns an integer representing the compression level, typically on a /// scale of 0-9 pub fn level(&self) -> u32 { self.0 } } impl Default for Compression { fn default() -> Compression { Compression(6) } } #[cfg(test)] fn random_bytes() -> impl Iterator<Item = u8> { use rand::Rng; use std::iter; iter::repeat(()).map(|_| rand::thread_rng().gen()) }